
BAJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

IMPLEMENTATION OF P2P REPUTATION MANAGEMENT

SCHEME BASED ON DISTRIBUTED IDENTITIES AND

DECENTRALIZED RECOMMENDATION CHAINS

BAJI SHAHEED BABA SHAIK
1
, G CHINNA BABU

2
, UPPE NANAJI

3

1
DEPARTMENT OF CSE, ST.THERESSA INSTITUE OF ENGINEERING AND TECHNOLOGY,

GARIVIDI, VIZIANAGARM DISTRICT, ANDRA PRADESH, INDIA,
2
ASST.PROFESSOR, DEPARTMENT OF CSE, ST.THERESSA INSTITUE OF ENGINEERING AND

TECHNOLOGY, GARIVIDI, VIZIANAGARM DISTRICT, ANDRA PRADESH, INDIA.
3
Associate professor, Department of computer science, St. Theressa Institute of Engineering and Technology,

Garividi (Cheepurupally), Andra pradesh, India

Abstract—The motivation behind basing applications on peer-to-peer architectures derives to a large

extent from their ability to function, scale and self-organize in the presence of a highly transient

population of nodes, network and computer failures, without the need of a central server and the

overhead of its administration. P2P networks are vulnerable to peers, who cheat, propagate malicious

codes, or peers who do not cooperate. Traditional client-server security models are not sufficient to P2P

networks because of their centralized nature. To full fill this ,in this paper we present a cryptographic

protocol for ensuring secure and timely availability of the reputation data of a peer extremely at low cost

and develop a queuing model to evaluate the time required at each peer to serve its replication requests.

Index Terms— Object Oriented Approach; P2P; attack; Encryption and Decryption.

I. INTRODUCTION

Peer-to-Peer (P2P) overlays like CAN [1], Chord [2], Pastry [3] and Tapestry [4] provide a self-organizing

substrate for large-scale peer-to-peer applications. These systems provide a powerful platform for the

construction of a variety of decentralized services, including network storage, content distribution, and

application-level multicast. Structured overlays allow applications to locate any object in a probabilistically

bounded, small number of network hops, while requiring per-node routing tables with only a small number of

entries. Moreover, the systems are scalable, fault tolerant and provide effective load balancing. Methods like

generating trust and protecting client-server networks cannot be used for pure P2P networks. This is because

trusted central authority is not used in the P2P networks.

However, to fully realize the potential of the P2P paradigm, such overlay networks must be able to

support an open environment where mutually distrusting parties with conflicting interests are

allowed to join. Even in a closed system of sufficiently large scale, it may be unrealistic to assume that none of

the participating nodes have

been compromised by attackers. All peers in the P2P network are identified by identity certificates. Reputation

of the peer is attached to its identity. Identity certificates are generated using self-certification method, and all

peers maintain their own identity certificate authority which issues the identity certificate to the peer. Each peer

owns the reputation information pertaining to all its past transactions with other peers in the network and stores

it locally. A two party cryptographic protocol not only protects the reputation information between the two

peers participating in the transaction. Proposing technique not only reduces the percentage of malicious

transactions in the network but also significantly reduces the network traffic compared to other reputation

systems.

The main contributions of this paper are:

 A self-certification-based identity system protected by cryptographically blind identity mechanisms.

 A light weight and simple reputation model.

 An attack resistant cryptographic protocol for generation of authentic global reputation information of

AJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

II. LITERATURE SURVEY

This section briefly reviews some of the existing P2P reputation systems, focusing particularly on the storage

and integrity issues. We start by giving an overview of the reputation systems.

Kevin A. Burton designed the open privacy distributed reputation system [5] on p2p, which is derived from the

distributed trust model. It proposed the concept of reputation network, which is composed by identities and

certificates. Therefore, the trustworthiness of the identities can be estimated from a visible sub-graph of the

reputation network.

P2PREP et.al. [6] is a reputation sharing protocol proposed for Gnutella, where each peer keeps track and

shares with others the reputation of their peers. Reputation sharing is based on a distributed polling protocol.

Service requesters can access the reliability by polling peers.

Karl Aberer et.al. [7] proposed a trust managing system on the P2P system. It integrates the trust management

and data management schemes to build a full-fledged P2P architecture for information systems. The reputations

in this system are expressed as complaints; the more complaints a peer gets, the less trustworthy it could be.

After each transaction, and only if there is dissatisfaction, a peer will file a complaint about the unhappy

experience. To evaluate the reputation of a peer involves searching for complaints about the peer.

Kamvar et.al [8] proposed a reputation management system, for P2P file sharing systems such as Gnutella to

combat the spread of inauthentic file. In their system, each peer is given a global reputation that reflects the

experiences of other peers with it.

Sit and Morris [9] present a framework for performing security analyses of p2p networks. Their adversarial

model allows for nodes to generate packets with arbitrary contents, but assumes that nodes cannot intercept

arbitrary traffic. They then present a taxonomy of possible attacks. At the routing layer, they identify node

lookup, routing table maintenance, and network partitioning / virtualization as security risks. They also discuss

issues in higher-level protocols, such as file storage, where nodes may not necessarily maintain the necessary

invariants, such as storage replication. Finally, they discuss various classes of denial-of-service attacks,

including rapidly joining and leaving the network, or arranging for other nodes to send bulk volumes of data to

overload a victim’s network connection (i.e., distributed denial of service attacks).

Dingledine et al. [10] and Douceur [11] discuss address spoofing attacks. With a large number of potentially

malicious nodes in the system and without a trusted central authority to certify node identities, it becomes very

difficult to know whether you can trust the claimed identity of somebody to whom you have never before

communicated.

Bellovin [12] identifies a number of issues with Napster and Gnutella. He discusses how difficult it might be to

limit Napster and Gnutella use via firewalls, and how they can leak information that users might consider

private, such as the search queries they issue to the network. Bellovin also expresses concern over Gnutella’s

“push” feature, intended to work around firewalls, which might be useful for distributed denial of service

attacks. He considers Napster’s centralized architecture to be more secure against such attacks, although it

requires all users to trust the central server. It is worthwhile mentioning a very elegant alternative solution for

secure routing table maintenance and forwarding that we rejected. This solution replaces each node by a group

of diverse replicas as suggested by Lynch et al. [13]. The replicas are coordinated using a state machine

replication algorithm like BFT [14] that can tolerate Byzantine faults. BFT can replicate arbitrary state machines

and, therefore, it can replicate Pastry’s routing table maintenance and forwarding protocols.

In this paper, we investigate Reputation Systems for P2P networks—a more ambitious approach to protect the

P2P network without using any central component, and thereby harnessing the full benefits of the P2P network.

III. SYSTEM ARCHITECTURE

In this section we discuss about system architecture. Figure 1 gives a sketch of the system architecture of peer

trust. There is no central database. Trust data that are needed to compute the trust measure for peers are stored

across the network in a distributed manner. The callout shows that each peer has a trust manager that is

responsible for feedback submission and trust evaluation, a small database that stores a portion of the global

trust data, and a data locator for placement and location of trust data over the network. Figure 2 shows a simple

example of a peer trust network of 6 peers constructed. For such a data location scheme, there is a trust issue

associated with it, namely, peers may misbehave by providing false data or random data when responding to a

search request.

BAJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

Figure 1 System architecture

Figure 2 Data location

A. Existing System:

The peers in the P2P network have to be discouraged from leeching on the network. It has been shown in

Tragedy of Commons that a system where peers work only for selfish interests while breaking the rules decays

to death. Policing these networks is extremely difficult due to the decentralized and ad hoc nature of these

networks. Besides, P2P networks, like the Internet, are physically spread across geographic boundaries and

hence are subject to variable laws.

The traditional mechanisms for generating trust and protecting client-server networks cannot be used for pure1

P2P networks. This is because the trusted central authority used in the traditional client-server networks is

absent in P2P networks. Introduction of a central trusted authority like a Certificate Authority (CA) can reduce

the difficulty of securing P2P networks. The major disadvantage of the centralized approach is, if the central

authority turns malicious, the network will become vulnerable. In the absence of any central authority,

repository, or global information, there is no silver bullet for securing P2P networks.

B. Proposed System:

In this paper, we investigate Reputation Systems for P2P networks—a more ambitious approach to protect the

P2P network without using any central component, and thereby harnessing the full benefits of the P2P network.

The reputations of the peers are used to determine whether a peer is a malicious peer or a good peer. Once

detected, the malicious peers are ostracized from the network as the good peers do not perform any transactions

with the malicious peers. Expulsion of malicious peers from the network significantly reduces the volume of

malicious activities. All peers in the P2P network are identified by identity certificates (aka identity). The

reputation of a given peer is attached to its identity. The identity certificates are generated using self-

certification, and all peers maintain their own (and hence trusted) certificate authority which issues the identity

AJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

certificate(s) to the peer. Each peer owns the reputation information pertaining to all its past transactions2 with

other peers in the network, and stores it locally. A two-party cryptographic protocol not only protects the

reputation information from its owner, but also facilitates secure exchange of reputation information between

the two peers participating in a transaction.

IV. IMPLEMENTATION

In this paper, we consider seven modules.

 Login Module

 Active Node in Dynamic root

 Group Controller

 Trusted Group Members

 Data Transfer

 Find Group Key

 Block Untrusted Users

A. Login Module

Authentication checking: In this module checks whether the user is authenticated or not if the user is

authenticated then they have the permission to process further transactions otherwise they cannot access any

transaction in this system.

Registration process: If the new user to this system first they must registered in the register module after they

have continue to process in the system. During the registration the user must enter the valid information for

create new user name and password if only valid user. Once user registered after they have authorized user of

this system.

B. Active Node in Dynamic route

In our communication group have number of client nodes are interconnected in the server. Each group has the

separate group key for communication in the group. When a new member joins or leaves the communication

group, only it’s reflecting for local subgroup. The each group has separate group key for communication in

between who are in the communication group in that time.

C. Group Controller

Backward Secrecy: Backward Secrecy is used to prevent a new member from decoding messages exchanged

before it joined the group. This property guarantees that a passive adversary who knows a subset of group keys

cannot discover the previous group keys.

Forward Secrecy: Forward Secrecy is used to prevent a leaving user or expelled group member to continue

accessing the group communication. This property guarantees that a passive adversary who

D. Trust Group Members

Our protocol directly addresses the problem of reducing the overload of the group controller. We divide the

multicast communication group into regional subgroups. Each subgroup is independently managed by a

subgroup controller (SGC) like a separate multicast group with its own subgroup key. Thus, when a member

joins or leaves the communication group, it joins or leaves only its local subgroup. As a result, only the local

subgroup communication key needs to be refreshed and the scalability problem is greatly mitigated.

E. Data Transfer

In cryptography encryption is the process of transforming information referred to as plaintext using an algorithm

called cipher to make it unreadable to anyone except those possessing special knowledge, usually referred to as

a key. The result of the process is encrypted information in cryptography, referred to as ciphertext. In many

contexts, the word encryption also implicitly refers to the reverse process, called decryption. In our multicast

communication group mainly concentrates on enabling the data transfer among the server and multiple clients in

the network communications. The server sends encrypted data and clients receive the decrypted data.

Encryption: Encryption is the conversion of data into a form, called a cipher text that cannot be easily

understood by unauthorized people. The translation of data into a secret code. Encryption is the most effective

way to achieve data security. In our communication protocol each sub group maintain the separate group key for

the communication among the network. Server send data transfer to multiple clients in encrypted data because in

between the data transfer unauthorized people cannot see easily what the server sending data to clients. This

process is shown in Figure 3 and source code is shown in table 1.

BAJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

Table 1 source code for File Encryption

private void blowfishEncrypt(byte in[], int off, byte out[], int outOff){

int L = (in[off] & 0xff) << 24 | (in[off + 1] & 0xff) << 16 | (in[off + 2] & 0xff) << 8 |

in[off + 3] & 0xff;

int R = (in[off + 4] & 0xff) << 24 | (in[off + 5] & 0xff) << 16 |

(in[off + 6] & 0xff) << 8 | in[off + 7] & 0xff;

 L ^= P[0];

 for(int i = 0; i < rounds;)

 {

 int a = L >>> 24 & 0xff;

 int b = 0x100 | L >>> 16 & 0xff;

 int c = 0x200 | L >>> 8 & 0xff;

 int d = 0x300 | L & 0xff;

 R ^= (sKey[a] + sKey[b] ^ sKey[c]) + sKey[d] ^ P[++i];

 a = R >>> 24 & 0xff;

 b = 0x100 | R >>> 16 & 0xff;

 c = 0x200 | R >>> 8 & 0xff;

 d = 0x300 | R & 0xff;

 L ^= (sKey[a] + sKey[b] ^ sKey[c]) + sKey[d] ^ P[++i];

 }

R ^= P[rounds + 1];

out[outOff] = (byte)(R >>> 24 & 0xff);

out[outOff + 1] = (byte)(R >>> 16 & 0xff);

out[outOff + 2] = (byte)(R >>> 8 & 0xff);

out[outOff + 3] = (byte)(R & 0xff);

out[outOff + 4] = (byte)(L >>> 24 & 0xff);

out[outOff + 5] = (byte)(L >>> 16 & 0xff);

out[outOff + 6] = (byte)(L >>> 8 & 0xff);

out[outOff + 7] = (byte)(L & 0xff);

}

Figure 3 encryption file and send

Decryption: Decryption is the process of converting encrypted data back into its original form. The process of

decoding data that has been encrypted into a secret format. Decryption requires a secret key or password. Server

send data transfer to multiple clients in encrypted data because in between the data transfer unauthorized people

cannot see easily what the server sending data to clients. After receiving encrypted data back into original form

in client side. Converting encryption and decryption only for security purpose. This process is shown in Figure 4

and source code is shown in table 2.

AJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

Figure 4 file decryption and receive

Table 2 source code for File decryption

private void blowfishDecrypt(byte in[], int off, byte out[], int outOff){

int L = (in[off] & 0xff) << 24 | (in[off + 1] & 0xff) << 16 | (in[off + 2] & 0xff) << 8 |

in[off + 3] & 0xff;

int R = (in[off + 4] & 0xff) << 24 | (in[off + 5] & 0xff) << 16 | (in[off + 6] & 0xff) << 8 |

in[off + 7] & 0xff;

L ^= P[rounds + 1];

 for(int i = rounds; i > 0;)

 {

 int a = L >>> 24 & 0xff;

 int b = 0x100 | L >>> 16 & 0xff;

 int c = 0x200 | L >>> 8 & 0xff;

 int d = 0x300 | L & 0xff;

 R ^= (sKey[a] + sKey[b] ^ sKey[c]) + sKey[d] ^ P[i--];

 a = R >>> 24 & 0xff;

 b = 0x100 | R >>> 16 & 0xff;

 c = 0x200 | R >>> 8 & 0xff;

 d = 0x300 | R & 0xff;

 L ^= (sKey[a] + sKey[b] ^ sKey[c]) + sKey[d] ^ P[i--];

 }

R ^= P[0];

out[outOff] = (byte)(R >>> 24 & 0xff);

out[outOff + 1] = (byte)(R >>> 16 & 0xff);

out[outOff + 2] = (byte)(R >>> 8 & 0xff);

out[outOff + 3] = (byte)(R & 0xff);

out[outOff + 4] = (byte)(L >>> 24 & 0xff);

out[outOff + 5] = (byte)(L >>> 16 & 0xff);

out[outOff + 6] = (byte)(L >>> 8 & 0xff);

out[outOff + 7] = (byte)(L & 0xff);

}

BAJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

F. Find Group Key

We divide the multicast communication group into regional subgroups. Each subgroup is independently

managed by a subgroup controller like a separate multicast group with its own subgroup key. when a new

member joins in the communication group then we create a new group key for only for its local group as wells

as existing member leaves from the communication group after that they don’t want to access the local subgroup

so only the local subgroup communication key needs to be refreshed. Source code for this is shown in Table 3.

Table 3 source code for Generate Group key

private synchronized void makeKey(BlowKey key){

 byte kk[] = key.getEncoded();

 if(kk == null)

 throw new KeyException("Null Blowfish key");

 int len = kk.length;

 if(len == 0)

 throw new KeyException("Invalid Blowfish user key length");

 if(len > 56)

 len = 56;

 System.arraycopy(S0, 0, sKey, 0, 256);

 System.arraycopy(S1, 0, sKey, 256, 256);

 System.arraycopy(S2, 0, sKey, 512, 256);

 System.arraycopy(S3, 0, sKey, 768, 256);

 int i = 0;

 int j = 0;

 for(; i < rounds + 2; i++)

 {

 int ri = 0;

 for(int k = 0; k < 4; k++)

 {

 ri = ri << 8 | kk[j++] & 0xff;

 j %= len;

 }

 P[i] = Pi[i] ^ ri;

 }

G. Block Untrusted Users

Trusted users are formed a group. If a new member request to join in group, the IP Address will be validated. IP

address will be validate with the help of subnet masking, such as the Class A, Class B, Class C Part of the IP

address. If the IP is not matched with the trusted group then it will not be allowed to enter into the trusted group.

V. CONCLUSION AND FUTURE WORK

Peer-to-Peer networks have previously assumed a fail-stop model for nodes; any node accessible in the network

was assumed to correctly follow the protocol. However, if nodes are malicious and conspire with each other, it

is possible for a small number of nodes to compromise the overlay and the applications built upon it. This paper

has presented the design and analysis of techniques for secure node joining, routing table maintenance, and

message forwarding in structured P2P networks. These techniques provide secure routing, which can be

combined with existing techniques to construct applications that are robust in the presence of malicious

participants.

Future work

Scalability is important for any system; various combinations of this procedure may be used for achieving better

result. The accuracy of the detecting may be improved by preprocess the data before analysis. So in this way

there is scope to the future enhancements.

AJI SHAHEED BABA SHAIK, G CHINNA BABU, UPPE NANAJI/ International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622

www.ijera.com

Vol. 1, Issue 4, pp.1803-1810

REFERENCES

[1]. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable content-

addressable network. In Proc. ACM SIGCOMM’01, San Diego, California, August 2001.

[2]. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable

peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM’01, San Diego, California,

August 2001.

[3]. Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and routing for large-

scale peer-to-peer systems. In Proc. IFIP/ACM Middleware 2001, Heidelberg, Germany, November 2001.

[4]. Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastructure for fault-resilient

wide-area location and routing. Technical Report UCB//CSD-01-1141, U. C. Berkeley, April 2001.

[5]. M Chen and J.P Singh. Computing and using reputations for internet ratins. In 3
rd

 ACM conference on

Electronic Commerce,2001.

[6]. F. Cornelli, E.Damiani, S.D.C. di Vimercati, S.Paraboschi, and P.Samarati, Choosing reputable servents in

aP2P network, in 11
th

 International Conference, 2002.

[7]. C. Dellarocas. Immunizing online reputation reporting systesm against unfacir ratins and discriminatory

behavior , ACM , 2000.

[8]. E.Friedman and P.Resnick. The social cost of cheap pseudonyms. Journal of Economics and management

Strategy,2001.

[9]. Emil Sit and Robert Morris. Security considerations for peerto-peer distributed hash tables. In Proceedings

for the 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02), Cambridge,Massachusetts, March

2002.

[10]. Roger Dingledine, Michael J. Freedman, and David Molnar. Accountability measures for peer-to-peer

systems. In Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly and Associates,

November 2000.

[11]. John R. Douceur. The Sybil attack. In Proceedings for the 1
st
 International Workshop on Peer-to-Peer

Systems (IPTPS ’02),Cambridge, Massachusetts, March 2002.

[12]. Steve Bellovin. Security aspects of Napster and Gnutella. In 2001 Usenix Annual Technical

Conference, Boston, Massachusetts,June 2001.

[13]. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third

Symposium on Operating Systems Design and Implementation (OSDI’99), New Orleans,Louisiana,

February 1999.

[14]. Nancy Lynch, Dahlia Malkhi, and David Ratajczak. Atomic data access in content addressable

networks. In Proceedings for the 1st International Workshop on Peer-to-Peer Systems (IPTPS

’02),Cambridge, Massachusetts, March 2002.

